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Dual space characterizations are given for weak Haar, Haar, and oscillating
subspaces of real valued (not necessarily continuous) functions on the line. The
characterizations improve known results, and provide a unified simpler approach to
oscillation spaces. .,1;) [992 Academic Press, Inc.

INTRODUCTION

If F is an n dimensional Haar space, then by definition no function in F
can have n sign changes. However, it may be possible for the "direction"
of a function f to have n sign changes. That is, there may be points
Xl < ... < x n + I such that (_I)i [f(x i + d - f(xJ] > 0 for i = 1, ..., n. There
are some beautiful theorems about this phenomenon. For example, if F is
a normalized Markov space (i.e., there exist Haar spaces F i of dimension
i such that F I is the constant, and F I C ... cFn _ 1 cF) then no function
in F can have such an oscillation. The circle of ideas involves four kinds of
spaces: Haar, weak Haar, strong oscillation, and oscillation spaces.

This paper has two purposes. The first is to present new results about
oscillation spaces. These include characterizations of these spaces in terms
of the functionals that annihilate them, and an annihilator lifting theorem.
It also includes improving known results. For example, the common
hypothesis that an oscillation space contains the constants is shown to be
superfluous, and the "betweeness" property (B) for the domain X of func
tions in the Markov Characterization of strong Haar spaces is reduced to
the much weaker assumption that X has no two point end sets.

The second purpose is to show that the annihilator characterizations
provide a unified approach to the main results (such as the determinant
and Markov characterizations) of oscillations. The characterizations
replace ad hoc computational case tracking proofs with strikingly economi
cal "soft analysis" arguments. A final "Notes" section contains comparisons
to the literature.
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Notation

Let X be a subset of the real line. Let LI k be the collection of all subsets
of X consisting of k distinct points listed in their natural order.

Measures. For x E X, let ,Y be the point evaluation functional at x. That
is, for every real function I on X, xU) = I(x). For x and)' E X put
a(x, y) = ,Y - f. For Y = {Xl' ..., xd E Llk> define ai = a(x;, x i _ J, i = 2, .... k,
and put

S( Y) = convex hull{{( _1)i .YJ7~ [},

p(y)={i Ci·Yi:C(iO, i=1,2, .... k},
1= [

H( Y) = convex hull{{( _l)i aJ7~ 2},

and

{

k ,

Q(Y)= i~2 (-1)i C/Y'i: Ci>0, i=2, ...,k}nH(Y).

We note that each member of H(xl> ..., xd is a positive multiple of a
member of S(x[, ..., xd. If F is a linear space F* is the space of linear
functionals on F. For E c F, El- = {L E F*: L(g) =°for all gEE}. Such
functionals are called annihilators of E. The dimension of a linear space E
is written dim E.

Functions. All functions will be real valued functions on X. We do not
assume that the functions are continuous. A function I is said to have an
alternation 01 length k if there is a {x[, ..., x dELI k such that I (or possibly
- f) satisfies (-1 )i-[ l(xJ > 0. It is said to have an oscillation (weak
oscillation, resp.) 01 length k if I (or - f) satisfies (_1)i [f(x i + d
l(xJ] >°(~o, resp.).

The Dirac delta function is the function (Yi.j which is 1 if i = j, and 0 if
i i= j. The restriction of a family of functions F to a set Y is written FI y.

The sign of a number c is -1 if c < 0, it is °if c = 0, and 1 if c > O. We say
that numbers a and b have weakly equal sign and write sign a;;::; sign b if a
and b are both nonnegative or both nonpositive.

For 1[,12' ...,In a basis for F, (x[, ..., xn)ELl n , we put

I[(xd 1[(x2) 1[(.'t n ) I

det {Ji (xj ) } =
12(x[) 12(X2) f2(.'t n):

In(xJ In(X2) In(x")
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Spaces. Let F be an n-dimensional space of real valued functions on X.
F is called Chebyshev if 0 is the only member of F with n zeros. It is termed
a weak Haar space if none of its members has an alternation of length
n + 1. If F is both Chebyshev and weak Haar it is a Haar space. F is called
an oscillating (strong oscillation, resp.) space if no f EF (nonconstant f EF
resp.) has an oscillation (weak oscillation, resp.) of length n + 1. It is clear
that a strong oscillating space is a Haar space. We afix the title Markov to
a space if it contains a family of nested subspaces-one for each dimen
sion-which share the same property. For example, F is Markov Haar
space if there are subspaces F, c F2 C •.. c Fn _ 1 C F such that each F; is
a Haar space of dimension i. If, in addition, the one dimensional subspace,
of a Markov space F, is the space of constant functions we call F a
normalized Markov space.

Conventions. Throughout this paper we will let F represent an n-dimen
sional space of real valued functions defined on X. We will often use the
same symbol for a measure and for the linear functional associated with it.

1. PRELIMINARY LEMMAS

We list, in this section, some elementary results, mainly from linear
algebra, that we reference later.

DEFINITION. For Y in the domain of F, and p E Y we say that p is
independent (of Y, and with respect to F) if dimFly>dimFly_{p}' We
call a set YsX basic (for F) if dim FI y=n. We put

(BA)k= {YEA k: Yis basic}.

LEMMA 1.1. P is independent of a set Y with respect to F if and only if
there is an f E F that vanishes on Y - {p} and such that f(p ) = 1.

Proof dim F decreases on Y - {p}, if and only if there is a nontrivial
linear combination of members of F that is zero on Y - {p}. I

LEMMA 1.2. Let O#V=L;'~"ViXiEF.L. xj is independent of {xi}7~"

with respect to F, implies vj=O. Furthermore if {xi}7~}E(BA)n+', then
vj = 0 implies that xj is independent.

Proof If xj is independent there is agE F that is nonzero only at Xj' So
v( g) = 0 implies that vj = O. Conversely suppose that vj = 0, we show that g
is in F. Since F has codimension 1 in the set of all functions on {Xi} 7~" ,
we have that F= 1'-'(0). Since gE v-leO), g is in F.
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LEMMA 1.3. F is weak Haar (oscillating, resp.) if and only if FI y is weak
Haar (oscillating, resp.) for each Y E (BLl)11 + l'

Proof The proof for oscillating spaces is precisely the same as that for
the weak Haar with the word "alternation" (which appears three times
below) replaced by "oscillation." Suppose that F is not weak Haar. There
is anfEFwhich has an alternation of length n+1 on some set {Xi};'~i.

If this set is not basic, we will substitute a new point for one of its members
in such a way that the dimension of F on the new set exceeds that on the
old, and such that F still has a function with an n + 1 alternation on the
new set. So now assuming that {XJ7~11 is not basic, from Lemma 1.1 there
is a tEX and gEF such that g(x;) =0, i=1, ...,n+1, and g(t}=l. We
assume that Xk < t < Xk+ 1 where Xo = - 00, and X,,+2 = 00. We will assume
that t < X n + 1 and substitute t for a member to its right. (Otherwise we use
the same procedure and replace a member of its left.) Let x w be the first
member to the right of t that is not independent (of {Xt}7~,1 with respect
to F!rx,n+l). If no such point exists then let w=n+1. By Lemma 1.1,

l- IJI=l

choose for each j = k + 1, ..., w- 1 and!; that vanishes on {Xi L""j and is 1
at Xj' Then

f + [f(Xk+ d - f{t)J g + L [f(xj ) - f(x j _ dJ f;-l
j~k+2

has the same values on Xl, ...,t,Xk+l"",X"'_1,X"+1o",,Xn +1 as f on
Xl' ... , X n + ,. Consequently both have alternations of length n + 1. I

LEMMA 1.4. Suppose that f has an (weak, resp.) oscillation of length
11+1 on {xi}7~11ELl"+1' If xo<x 1 then there are {yJ7~lEL1" such that
X o< Y 1 and f has an (weak, resp.) oscillation of length n + 1 on
{xo, )'1' Y2, ... , Yll}'

Proof Suppose f(xd > f(X2) (or ~ if f is weak oscillating). Then if
f(xo}>f(xd, putYt=Xi +1 • Iff(xo)::;;;f(x1),·putYt=x i · I

2. CHARACTERIZATIONS

THEOREM 2.1 (Annihilator Characterization). (a) F is oscillating if and
only if for every x E Ll n +l' H(x) n F 1 # 0·

(b) F is a weak Haar space if and only if for eL'ery x E Ll n + 1,

S(x) n FJ. # 0.
(C) F is a strong oscillation space if and only if for every x ELl" + 1 ,

Q(X) n F1. # 0.
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(d) F is Chebyshev if and only if every annihilator of F that is
supported 011 {x I' ... , X n+ dELI" + I is in P(x I> ... , x" + I)'

Proof Suppose f E F has an oscillation of length n + 1 on
{xl, ...,xn+dELln+I' We can assume that f(xI) <f(x1)· Let /1=
L7~1 (_I)i Ci(J.iE H(xI' ..., Xn+d. For each i, (_I)i (J.;/> O. Since not each
C i is zero, /1f> 0 and /1 is not in F.L.

Conversely suppose there does exist {XI' ... , X n + dELI n + 1 such that
H(xl>""xn+l)nF.L=0. From the Hahn-Banach Theorem there is an
f E F such that /1(f) > 0 for all /1 E H(x l' ..., Xn+ 1)' In particular
( _1)i (J.i(f) > 0 for each i. But this says that f has an oscillation oflength
n + 1. This proves part (a).

The proof above for oscillation spaces adapts to the weak Haar setting
by replacing the word "oscillation" with "alternation," and replacing the set
H(x l , ... , xn+l ) with S(x1, ..., Xn+I)'

Just as in the proof of (a) above Q(x) n F.L 0;6 0 for all x E LI,,+ I implies
that F is a strong oscillation space. So now suppose that F is a strong
oscillation space. For {Xi} ;'~ II ELI n+ 1 there are nonnegative numbers
{ci}7~i such that /1=L;'~21 (-I)ici(J.iEFl-. We need to show that each
ci>O. Since F is a Haar space, its restriction to {xi}7~/ is still n-dimen
sional. Hence it is all of the null space of /1. Suppose that Ck = O. Let g(x;)
be 0 for i < k and 1 if k ~ i. Then /1( g) = 0, and so it is the restriction to
{xi}7~11 of some member of F. However, g has a weak oscillation of length
n + 1. This proves (c).

Part (d) follows from the fact that F is Chebyshev if and only if the
functionals associated with any set of n distinct points of X are linearly
independent. I

COROLLARY 2.2. An oscillating space F contains the constants.

Proof If Fu {1} is n + 1 dimensional, there are points {Xi}7~/ so that
the restriction of F u {I} to {Xi} 7~/ is n + 1 dimensional. By the charac
terization Theorem 2.1 there is a Jt E H(x I> ... , x" + 1) n Fl-. But then the null
space of /1 is an n dimensional subspace (of the space of all functions on
{x;};'~n which contains both F and the constants. I

COROLLARY 2.3. Let x lEX. No member of F admits a (weak, resp.)
oscillation of length n + 1 on [x I' 'x!) n X if and only if for sets of n points
{xi}7~i such that XI < X2 < ... <xn+l , we have H(x1, ..., xn+d n F I 0;6 0.

Proof Suppose that Y = {{Yi }7~/ C [XI' ex)) n X and {Yi}7~/ E LI,,+ d.
By Lemma 1.4 if F restricted to each {Y;}7~/ E Y with YI = XI is an
oscillation space, then F restricted to each Y E Y is an (weak, resp.)
oscillation space. I
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COROLLARY 2.4 (Generic Subspaces Lemma). Suppose that u < v, and
that both are in X. Suppose, also, there are g and h E F such that g(u) =I- 0 and
h(u)#h(v). Put E= {fEF:f(u)=f(v)} and G= {fEF:f{u)=O}.

(a) If F is an oscillating space, then E is an n - 1 dimensional
oscillating space on the domain [u, OC!) n X.

(b) If F is a strongly oscillating space, then E is an n - 1 dimensional
strongly oscillating space on the domain [u, eX!) n X.

(c) If F is a weak Haar space, then G is an n - 1 dimensional weak
Haar space on [u, ,Xi) n X.

Proof Suppose that F is oscillating. Let {X3<X4<'" <X,,+i}C
(u, CfJ) n X. Put XI = II and X2 = u. From the oscillation space charac
terization Theorem 2.1, there are nonnegative constants C i such that
:L7':;-{(-1)icilXiEFl-. Since 1X 2 EEl-, we have that :L7':;-31 (-l)icilXiEEl-.
By Corollary 2.3 this implies that E has no Il oscillating functions on
[v, ex)) n X. This proves part (a).

If F is strongly oscillating all the c; obtained in the last paragraph are
positive. So E is strongly oscillating.

Assume now that F is a weak Haar space. Let {x 2 < X3< ... < x" +de
(ll, CfJ) n X. Put XI = ll. There are nonnegative constants Ci such that
"L7':;-11 (-l)ici:iiEFl-. Since .X 1 EGl-, we have that 2.:7':;-{ (-lrcilXiEG-L.
Therefore G is a weak Haar space on (u, 00) n X and therefore on
[u,oo)nX. I

It follows from the independence of the functionals associated with
distinct points that if F is Chebyshev then det{f;(xJ} # O. The following
similarly characterizes weak Haar spaces.

THEOREM 2.5 (Determinant Characterization). Let fl' ..., fn be a fixed
basis for F. Then F is a weak Haar space if and only if det {fiC"\)} weakly
has the same sign (i.e., is always nonpositive or is always nonnegative) for
each (XI"", x n) E Ano

Proof Suppose first that F has the weak constant sign property for
the determinants. For {X-,.}7':;-11 E (BA),,+ l' we wish to show that
S(x 1"",x"+I)nF-L#0. It would then follow from the Annihilator
Characterization Theorem 2.1(b) and Lemma 1.3 that F is a weak Haar
space.

Since {X,}7':;-11 is basic with respect to F, some set of n of the associated
point evaluation functionals ,xi are linearly independent on F. For
specificity we will assume that {-Xi }7~ 1 are linearly independent (keeping
track of the indicies in the general argument obscures the simple idea of the
proof).
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We choose a basis {j~}7~ 1 of F with the property that Ii (Xi) = bi,j for
i, j = 1, ..., n. Then by the sign property for the determinants· associated
with {Xl' ..., xn} and {Xl' ..., Xn- I, xn+d

1 0 0 0 1 0 0 11(Xn+d
0 1 0 0 0 1 0 12(Xn+d

SIgn ~ sign :

0 0 1 0 0 0 1 In-I(Xn+d
0 0 0 1 0 0 0 In(xn+1)

Computing the second determinant by expanding in cofactors along
the bottom row gives In(xn+d~O. From the definition of In'
[f,,(Xn+1) Xn- ;in+I](fn) = O.

Similarly for the determinant associated with x 1, ...,xn-2,xn,xn+I we
have

1 0 0 0 1 0 0 IIC~n+d

0 1 0 0

sign : ~sign 0 1 0 In-2(Xn+1)

0 0 1 0 0 0 0 In-I(Xn+d
0 0 0 1 0 0 1 In(xn+d

0 11(Xn+d 0

= -sign 0 1 In-ixn+d O.

0 0 In-I(Xn+d 0

0 0 In(x,,+d 1

Hence/"_I(Xn+I)~O and [fn-IC~n+dxn-I-Xn+I](fn-d=O.

Continuing this process we have that (- 1)n - j jj (xn+1) ~ 0, and
1:7= 1 li(Xn+ 1) .fi - Xn+ 1 annihilates each Ii and so a positive multiple of it
belongs to S(Xr. ..., X n ) n FL, and F is a weak Haar space.

Now suppose that F is a weak Haar space, and has a basis 11 , ..., In. Let
{X;}7:IIELln+I' For each l~i~n+l, let ik=kfork<i, and =k+l for
k ~ i. We first show that the determinants D(i) = det {jj (xiJ } weakly have
the same sign. If all these determinants are zero then the statement is true.
Again to avoid the obfuscation of index tracking in the general case we will
assume that D(n + 1) # O. Since F is assumed to be a weak Haar space
there are Ci~ 0 such that 1:;':/ (_1)i CiXiE Fl.. D(n + 1) # 0 implies that
Cn+I#O. So on F, 1:;=1 ((-l)jc)(-l)ncn+dXj=xn+I' Now for a fixed
i (1 ~ i ~ n), using elementary column operations to replace the ith column,
we have
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" (-IVc.
" 'J ((xl1.. (_1/11 . I . J'

j= I c ll + I

i
fl(x,,)1

I

195

(-l)i ci fl(;''')1

fn(xn)1

c.= (_1)n-i_[ D(n + 1).
cn + 1

But the first determinant is equal to

fl(x n )

= (-1)/1 - i D(i).

fJ<[JI

We conclude that sign D(n + 1) ~ sign D(i).
Finally suppose that {Xi};[~1 and {yJ;[=l are both in (R.1)11 (with

respect to F). We want to show that sign det{ff(x i ) L: j = 1 =
sign det {ff (yJ }7. j = l' The above paragraph shows that if we replace the
x/s one at a time by y/s, the resulting new determinants weakly have the
same sign as its predecessor. We need to observe that this can be done with
none of the determinants being equal to zero. We do this as follows. Since
{.i i} 7=1 is a basis for the dual of F, some (unique and nonzero) linear
combination of them equals.ft (on F). Use Y1 to replace anyone of the x[
that has a nonzero coefficient. The resulting new set in L1 n still produces a
nonzero determinant. Having replaced k - 1 members of {Xi }7~ 1 with
{y[}~,:/, to produce a new basic set B we write J'k as a linear combination
of the members of B. One of the functionals with a nonzero coefficient must
be from the set {.i i} 7~ 1 (since {,ft} 7=1 is linearly independent). Hence
replacing that element with Yk completes the induction step. I

COROLLARY 2.6. Let f1, ..., fn be a fixed basis for F. Then F is a Haar
space if and only if det {fi (xj )} has the same sign for each (x l' ... , X n) E An"

3. LIFTING PROPERTIES

LEMMA 3.1 (Annihilator Lifting Lemma). Let F= {f} + E be a weak
Haar space. Let both {Xi};'=1 and {XJ;'':;2IE(BL1)11 with respect to F If



196 DANIEL WULBERT

J.l = L7~ I J.lj,ijE S(X I, ..., Xn) n E.L and v = L7:21 Vj,ijE S(x2, ..., Xn+ d n E.L
then sign J.l(f) ;;:;; sign v(f).

Proof Let E = span {JI> ...In _d. There is a set of n - 1 points in
{x j }7:/ whose associated point evaluation functionals are linearly inde
pendent on E. Let X s and Xl be the two points left out. We may assume
that 1:::; s :::; nand 2:::; t :::; n + 1. From Lemma 1.2 we have that J.ls =I 0 =I v"
and that det{/;(x)}7=-L7:s\=lO. For clarity we will assume that s= 1 and
t = n + 1. The general case is precisely the same.

Using elementary column operations we have

fl(xd fl(X2) fl(Xn)

f2(xd f2(X2) f2(Xn)

fn-I(xd f,,-I(X2) fn-I(Xn)

f(xd f(X2) f(xn)

J.l(fl) fl(X2) fl(Xn)

1
J.l(f2) fA x 2) f2(Xn)

III
Il(fn-d f,,-I(X2) fn-I(X,,)

J.l(f) f(x 2) f(x,,)

Since J.l E E.L, expanding the last derminant in cofactors along the first
column gives

fl(X2) fl(X,,)

~ ( -1)" - I J.l(f)
fAx2) f2(Xn)

III

fn-I(X2) f,,-I(Xn)

Similarly,
fl(X2) fl(X 3) fl(Xn+d

fA x 2) f2(X3) f2(Xn+l )

fn-I(X2) f,,-I(X3) f,,-I(X,,+d
f(X2) f(X3) f(x,,+d

fl(X2) fl(Xn)
1 f2(X2) f2(Xn)

=-v(f)
V,,+ I

f,,-I(X 2) f"-l(Xn)
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The left side determinants in the two equations above have weakly equal
sign since F is a weak Haar space. The last determinant displayed 1S
not zero since no function in E vanishes on {xz, ..., X n }. Since
sign III = (- 1t -1sign vn + 1 we conclude that sign Il(f) = sign v(f). I

THEOREM 3.2 (Liftings). (a) An n dimensional weak Haar space F is an
oscillating space if it contains an n - 1 dimensional oscillating space E.

(b) An n dimensional Haar space F is a strong oscillating space (f it
contains an n - 1 dimensional strong oscillating space E.

Proof To prove (a) it suffices (from Lemma 1.3) to show that for
{Xi};l~/E(BL1)n+l' H(Xl, ...,xn+tlnF~=l-0. Since Eis an n-1 dimen
sional oscillating space on {xi}7~/ there are IlEH(Xl, ...,xn)nE~ and
v E H(x z, ..., x n + rl n E~. If Xl is independent of {x;}7~/ with respect to F,
there exists agE F such that g(x tl = 1 and g(xJ = 0 for i = 2, .. _, n + l.
Hence v EF~ and is the desired measure. Similarly if X n + 1 is independent
of {xJ7~ 11, II EF ~ and is the desired measure. If neither Xl nor .'Co + 1

.. d d f r }n+l h b h f 'n d' }n+l b'IS m epen ent 0 LXi i~I' t en ot l,'.:"di~.r an tXi l~Z are aSK

with respect to F and hence with respect to E. So the Annihilator
Lifting Lemma 3.1 applies. Hence there are C1 and cz each ~ 0 whose sum
equals one and such that Cdl-CzVEF"'. Since j1EH(x 1 , ... ,x,,) and
vEH(xz, ... , x n+1 ), we have that Clll-CzVEH(Xl' ... , x n+1 ).

To prove (b) let {Xi }7~11 E L1 n + l' Since E is an n - 1 dimensional strong
oscillating space there are II E Q(x 1 , ... , x n) n E J and v E Q(xz, ..., Xn+1) ,'-'
E~. Since F is a Haar space every set of n points is basic for J<~ and
therefore E. The annihilator lifting theorem applies, and there are C 1 and C2

each ~O whose sum equals one and such that C1Jl-C zVEF-'-. Since F is
a Haar space neither II nor v by itself, annihilates F. Hence each of (1 and
Cz is positive. We have that Clll-CzVEQ(X"""xn+!)' I

COROLLARY 3.3. F1 c F z C .. , c Fn • If F1 is the space of constant
functions, and each Fi is a Haar space of dimension i, then each F i is a
strong oscillation space.

4. MARKOV WEAK HAAR AND MARKOV OSCILLATING SPACES

THEOREM 4.1. F is an oscillating space if and only if it is a weak Haar
space that contains subspaces F 1 c Fz C ... C F such that F[ is the constant,
and each Fi is a weak Haar space of dimension i.

Proof If such subspaces exist it follows from the Lifting Theorem 3.2
that each F i and F is an oscillation space. To prove the other direction we
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will show that if F is an oscillation space, then F contains an n - 1 dimen
sional oscillation space. First we need:

Notation. Let 11·11 represent any norm on the finite dimensional space F.
The dual space norm will also be written 11·11. We can assume that there is
no XEX such that Fis constant on (-oo,x)nX. Let m=inf{xEX} and
w=inf{xEX- {m}}. Now choose Ui and ViEX such that (1) Ui<V i' (2) if
mEX then ui=m otherwise ui~m, (3) if m<WEX then Vi=W otherwise
Vi~W, and (4) there exists a giEFsuch that gi(uJ0;6gi(VJ

Proof Continued. r:t(ui, vJ/llr:t(ui, vJII has a subsequence (which we can
assume we already have) that converges to a norm one functional L.
N = N(L), the null space of L, has dimension n - 1, and for eachfE N there
is anfiE N i the null space of r:t(ui, vJ such thatfi ~ f (in norm, and in par
ticular, pointwise). So if no member of N i has an oscillation of length n on
[v i' 00) n X, then no f EL can have an oscillation of length n on X. This
property of N i is precisely the Generic Subspace Lemma 2.4. I

THEOREM 4.2. A weak Haar space is a weak Haar Markov space.

Proof We want to show that if F is a weak Haar space, then F contains
an n - 1 dimensional weak Haar space. This only requires a simplification
of the above proof for Theorem 4.1. Define m and U i as above and assume
the existence of giE F for which gi(UJ 0;6 O. Let L = lim(udlluill) (where we
have passed to a convergent subsequence if necessary). To show that the
null space of L is a weak Haar space it suffices to show that the null spaces
of ui are weak Haar spaces on (u i , (0) n X. Again this is the Generic
Subspace Lemma 2.4. I

5. MARKOV CHEBYSHEV SPACES

THEOREM 5.1. A Chebyshev space F on X contains an n -1 dimensional
Chebyshev subspace E if and only if F can be extended to be a Chebyshev
set on Xu {p} for some point p ¢ x.

Proof If F can be extended then the null space of ft is an n - 1 dimen
sional Chebyshev subspace of F. Conversely if such a subspace E exists,
there is a nonzero L EF* n E 1- (if n > 1), and we define f(p) = L(f) for all
f EF and some fixed p ¢ X. Then F is Chebyshev on {p} u X. I

COROLLARY 5.2. A Chebyshev space, F, on a countable set, X, is a
Markov Chebyshev space.
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Proof For any set n-1 points {x i }7':-/EX the n-1 dimensional
space, span{x i }7,:-l is nowhere dense in the n dimensional space F*. Since
X is countable there are only countably many such spans. So from the
Baire Category theorem there is an L EF* that is not in the span of any
n - 1 point evaluation functionals. Let p be any point not in X and extend
F by defining f(p) = L(f). Now for any set of n - 1 points {Xi} 7,:- / EX,
{p, .f1, ... , .fn _ d are linearly independent, and so F is Chebyshev on
{p}uX. I

6. MARKOV HAAR AND MARKOV STRONG OSCILLATING SPACES

DEFINITION. YcX is an end set (of X) if (inf{xEX: x1'. Y}, SUp{XEX:
x¢; Y} ) n Y = 0. Further {a, b} c X, a < b is a two point end set if either

(i) a=minX<b=min{X-{a}}, or

(ii) a = max{X - {b } } < b = max X.

A measure J1 supported on an end set is called an end measure.

We are interested in characterizing strong oscillating spaces, in the
fashion Theorem 4.1 characterizes oscillating spaces as Markov weak Haar
spaces. If F is oscillating and X contains a two point end set {a, b} of the
two smallest members of X then the construction in the proof of
Theorem 4.1 produces the null space of r:t.(a, b) as an n - 1 dimensional
oscillating subspace of F. The problem in the present setting is that even if
F is Haar, the null space of a two point end measure is never a Haar space.
Furthermore, as the next example shows, these are not the only oscillating
subspaces of strong oscillation spaces that are not Haar subspaces.

EXAMPLE 6.1. Let X = {O, 1} u [2, w), let F be the restriction to X of
the polynomials of degree 3 or less, and let E = span{1, x, x(x - 1)(x - 2) }.
To show that E is 3 oscillating we use the fact that x(x-I )(x - 2) is
convex for x> 2 implies that a linear function can maximize it on at most
a single finite interval in [2, 00).

In Example 6.1, E is the null space of the end measure 0- 21 +2. The
next theorem shows that these are the only types of examples.

THEOREM 6.2. Let F be a Haar space. If E is an /l - 1 dimensionallveak
Haar (oscillating, respectively) subspace of F that is not Chebyshev, then E
is the null space of an end measure J1 E 8(x 1 , •••• Xk) (H(x 10 ••• , xd, resp.).

Proof Suppose that fEE has n - 1 zeros {xJ7,:-l. We will shw there is
a measure supported on these zeros that satisfies the theorem. If y is any
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point in X - {X i} 7,:-l then since E is n - 1 weak Haar (oscillating, resp.)
there is a measure flES({Y}U{Xi}7~-n (H({y}u{xi}7':-n, resp.) that
annihilates E. Since F is a Haar space f( y) # 0, and so by Lemmas 1.1 and
1.2, the coefficient of y must be zero. It remains to show that {Xi}7':-11 is an
end set. Suppose there is also a z EX - {Xi}7':-11 and y < X k < z. Then there
is also a measure v in S({z}u{xi}7,:-n (H({z}u{x i}7':'-n, resp.) that
annihilates E. Again the coefficient of z is zero. So both fl and v are
supported on {x i }7,:-l. Notice also that each point in (y, z) n {xi }7':-11
(in particular Xk) has fl and v coefficients with weakly opposite sign.
By the Annihilator Lifting Lemma 3.1 if g E F - E, then (since F is Haar)
sign fl(g) = sign v(g). Therefore fl-CVEFJ.. for some c>O. Since Fis Haar,
no annihilator can be supported on n or fewer points. Hence fl- cv = O.
But since the fl and v coefficients of Xk have weakly opposite sign they must
both be zero. This shows that fl is supported on a subset of {xd that is
an end set. I

Two observations come from the proof above.

COROLLARY 6.3. Let F, E, and fl be as in the statement of the theorem.

(a) fl is supported on an end set of n - 1 or fewer points.

(b) If fEE has n - 1 zeros, then f vanishes on an end set.

EXAMPLE 6.4. Let X and F be as in Example 6.1 above. Let
E=span{1,(x-2f, x(x-1)(x-2)}. Although E is the null space of
(0 -1) - 3(1- 2), it is not weakly Haar. To see this let g(x) =
x(x-1)(x-2)-6(x-2f Then g is negative for x<2 and 3<x<4.
Also g is positive for 2 < x < 3 and 4 < x.

THEOREM 6.5. Let F be a Haar space on a set X that contains neither its
maximum nor its minimum, then:

(i) every n -1 dimensional weak Haar subspace of F is a Haar space,
and

(ii) F is a Markov Haar space.

Proof Part (i) follows from Theorem 6.2 since X has no finite end sets.
From Theorem 4.2, F is a Markov weak Haar space, and from part (i)
each of the associated subspaces is a Haar space. I

THEOREM 6.6. Let F be an oscillating Haar space on a set X that
contains no two point end sets. Then

(i) F is a strong oscillation space,
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(ii) every n -1 dimensional oscillating subspace of F is a Haar space,
and

(iii) F is a Markov strong oscillating space.

Proof For part (ii) we use the fact that a nonzero measure in
H(x), , x n ) must have two points in its support. Hence an end measure in
H(x 1, , X n ) must contain a two point end set in its support. In view of
Theorem 6.2, this proves (ii). From Theorem 4.1, F is a Markov oscillating
space, and from part (ii) each of the associated subspaces is a Haar space.
Furthermore from the Lifting Theorem 3.2 each of the subspaces and F
itself is a strong oscillation space. I

EXAMPLE 6.7. There are oscillation-Haar spaces that are not strong
oscillation spaces. To construct one we just take a finite set of points
X1<X2<· .. <Xk' Then choose a ,u=L:~=2(-l);c;a; with the following
properties: all c;):O, c2 >0, Ck>O, not all c;>O, but if c;=O, then c;+) >0.
Then the null space of ,u is an oscillation space (since ,u E H(XI' ..., Xk)), and
a Haar space (since each .Y:; has a nonzero coefficient), but it is not a strong
oscillation space (since ,u ¢ Q({ X; }~= 1))' To give a specific example, let
X = {I, 2, 3,4}. Let F be the space spanned by the 3 functions whose
values on p, 2,3,4} are fl: (1, 1, 1, 1); 12: (1, 1,0,0); and f3: (1,0,0, 1).
This is the null space of (2 -1) - 0(3 - 2) + (4 - 3).

7. NOTES

There is no accepted convention in the literature for naming the concepts
we called oscillating, alternating, Haar, weak Haar, Markov, etc. Besides
the names here being given other meanings there are other common names
such as T-systems and WT-spaces (for weak Tchebyshev), alternating
spaces, complete systems, and extended T systems.

Corollary 2.2, that a weak oscillation space contains the constants, has
been proven under additional hypotheses. For example, suppose that F is
an oscillating Haar space of continuous functions on [a, b]. If 1 rt F then
some member U E F is a best approximation to 1. Then U - 1 has an alter
nation of length n + 1, and so u has an oscillation of that length. This argu
ment has been adapted to somewhat less restrictive conditions. Zwick
[14], for example, showed that an oscillation space of continuous func
tions on [a, b] contained the constants. However, the general theorem was
not known, and in fact it has been a common hypothesis to explicitly
assume that an oscillation space contained the constants.

The determinant characterization Theorem 2.5 of weak Haar spaces was
first proved by Jones and Karlovitz [4] for a special case. The general

640/69,2·7
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form is due to Bastien and Dubuc [1]. The proofs approximate the weak
Haar space by a Haar space, and prove the result there. A more direct
proof was given in Zielke [12].

The version of the Annihilator Lifting Lemma 3.1 stated in the paper is
exactly what we needed the three times it was invoked. However, the
following form seems, to me, to have more intrinsic connection with this
theory.

LEMMA (Annihilator Lifting Lemma). Let F= {f} + E, and suppose
that both F and E are weak Haar spaces. Let {xi}7~l and {y;}7=l ELl n + l .

Suppose that dim E = n - 1 on both {X;}7~l and {Y;}7~l' If
P = L;'~ 1 PiX; E S(x l' ..., XIl ) (\ E.L and v= L7~ 1 V;X; E S(Yl' ... , )'Il) (\ E.L,
then sign p(f) ~ sign v(f).

Proof This is the same proof as above with the added observation that
since E is a weak Haar space the two resulting (n - 1) x (n - 1) deter
minants are nonzero and have the same sign. That is, we write the determi
nant for the basis elementsfl, ...,fll_l,fand the points {X;}7~l' One of
the points, say Xb is not independent of the rest with respect to E. Using
elementary column operations we replace the kth column with
pfl' ..., pfn _ l, pf This gives a new determinant that is equal to ( - 1)k +1 Pk
times the original. Also the kth column consists of all 0 entries except the
last which is pf To compute the determinant we expand about the kth
column to obtain that the original determinant is equal to

(_l)k+l ~ (_l)n+k p(f) det{!,.(x.)}Il-l,1l .Pk I J ,~l,J~l,J"k'

We do the same process for the points {)';} 7~ 1 and the annihilator v,
and again reduce the n x n determinant to (- 1t +1 v(f)( l/v h) det
{f; (Xj )} 7:ll:l= l,Nh for an appropriate h. From the weak Haar property,
the two original n x n determinants weakly have the same sign, and the two
final (n - 1) x (n - 1) determinants have the same sign. By our choices of k
and h both (n - 1) x (n - 1) determinants are nonzero, and both Pk and Vh

are positive. We conclude that p(f) and v(f) weakly have the same
sign. I

One direction of Theorem 4.1 states that a weak Haar normalized
Markov space is an oscillation space. The result was proved with addi
tional assumptions by Zielke [12] and Zwick [14]. Zielke proved this ver
sion in 1985 [11] using a Gauss kernel approximation from his 1979 Haar
space version. In 1989, he and Schwenker found a proof that avoided the
Gauss approximation [13].

The other direction of 4.1 is in Zielke [12] under the additional assump
tion (unnecessary) that the space contains the constants.
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Versions of Theorem 4.2 that weak Haar spaces are weak Haar Markov
are due to Stockenberg [8J and to Sommer and Strauss [7]. Another
approach to this result is to mimic the observation that if G c C 1 [a, b] is
an n-dimensional space then G is an oscillating space if and only if the
n - 1 dimensional (since 1 E G) space of the derivatives of G is a weak Haar
space. Hence the space of derivatives is Markov weak Haar if and only if
G is Markov oscillating. So if there is a finite measure J1 on an arbitrary X
such that J1 was positive on the open subsets in the topology generated by
F (for example, Fe C[a, bJ and J1 Lebesgue measure, or X is countable
and p gives positive measure to each atom). Then the space of integrals of
F along with the constants is oscillating if and only if F is weak Haar.
Having proved that oscillating spaces are Markov, that would give thaI F
is weak Haar Markov.

In fact, considerable attention is paid to spaces generated by taking
integrals. The body of results laid out in Karlin and Studden [5J for such
differentiable weak Haar systems is one of the original reasons for interest
in the spaces studied here.

Theorem 5.1 characterizing when Chebyshev spaces have Chebyshev
subspaces of codimension 1 is due to Zielke [10]. The proof here, although
a little simpler, was mainly included for two other reasons. First, its an
annihilator proof and seemed to fit the spirit of the other results here.
Second, Corollary 5.2 was previously only stated (see Zielke [12J) for
finite sets X.

Versions of Theorem 6.5 for Markov Haar spaces are attributed to Krein
(unpublished), Nemeth [6J, and Zielke [10]. The general form is due to
Zalik [9J and another proof is in Zielke [12].

Theorem 6.6 for Markov strong oscillation spaces is proved in Zielke
[12 J under the additional assumptions that 1 E F and that X has the
property that if x and Y E X there is a Z E X such that x < Z < y.

The methods for 6.6 provide conditions on X under which every
oscillating Haar space is Markov. It does not identify all the Markov spaces.
For example, if we start with a oscillation Haar space, the method picks
out an oscillating subspace of codimension one. Then if the conditions ten
us that every such subspace is Haar, the proof is completed. It may be true
that even though the oscillating subspace picked out by the method is not
Haar, there are some other oscillating subspaces that are Haar. Specifically
let F be the polynomials of degree 2 or less restricted to X = [O} u [2, 3].
The method of the paper selects the subspace spanned by 1 and (x - 1f
which is oscillating but not Haar. Perhaps a better method would select the
oscillating Haar space spanned by 1 and x.

Example 6.7 shows that there are oscillating Haar spaces that do not
contain oscillating subspaces of codimension 1. This examr;:e is in Zielke
[12, Chap. 8, Exercise 2].



204 DANIEL WULBERT

REFERENCES

1. R. BASTIEN AND S. DUBUC, Systemes faibles de Tchebycheff et polynomes de Bernstein,
Canad. J. Math. 28 (1976), 653-658.

2. M. W. BARTELT, Weak Chebyshev sets and splines, J. Approx. Theory 14 (1975), 30-n
3. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York,

1966.
4. R. C. JONES AND L. A. KARLOVITZ, Equioscillation under nonuniqueness in the

approximation of continuous functions, J. Approx. Theory 3 (1970), 138-145.
5. S. KARLIN AND W. J. STUDDEN, "Tchebyshev Systems with Applications in Analysis and

Statistics," Interscience, New York, 1966.
6. A. B. NEMETH, Transformations of the Tchebyschev system, Mathematica (Cluj) 8 (1966),

315-333.
7. M. SOMMER AND H. STRAUSS, Eigenschaften von schwach Tschebysheffschen Riiumen,

J. Approx. Theory 21 (1977), 257-268.
8. B. STOCKENBERG, Subspaces of weak and oriented Tchebyshev spaces, Manuscripta Math.

20 (1977), 401--407.
9. R. A. ZALIK, On transforming a Tchebyshev system into a complete Tchebyshev system,

J. Approx. Theory 20 (1977), 220-222.
10. R. ZIELKE, On transforming a Tchebyshev system into a Markov system, J. Approx.

Theory 9 (1973), 357-366.
11. R. ZIELKE, Relative differentiability and integral representation of a class of weak Markov

systems, J. Approx. Theory 44 (1985), 30--42.
12. R. ZIELKE, "Discontinuous Chebyshev Systems," Lecture Notes in Mathematics, Vol. 707,

Springer-Verlag, Berlin/HeidelbergfNew York, 1979.
13. R. ZIELKE AND F. SCHWENKER, An elementary proof of the oscillation lemma for weak

Markov systems, J. Approx. Theory 59 (1989), 73-75.
14. D. ZWICK, Characterizations of WT-spaces whose derivatives form a WT-space,

J. Approx. Theory 38 (1983), 188-191.


